The domain of the definition of the function $f\left( x \right) = \frac{1}{{4 - {x^2}}} + \log \,\left( {{x^3} - x} \right)$ is
$\left( {1,2} \right) \cup \left( {2,\infty } \right)$
$\left( { - 1,0} \right) \cup \left( {1,2} \right) \cup \left( {3,\infty } \right)$
$\left( { - 1,0} \right) \cup \left( {1,2} \right) \cup \left( {2,\infty } \right)$
$\left( { - 2, - 1} \right) \cup \left( { - 1,0} \right) \cup \left( {2,\infty } \right)$
Consider a function $f : N \rightarrow R$, satisfying $f(1)+2 f(2)+3 f(3)+\ldots+x f(x)=x(x+1) f(x) ; x \geq 2$ with $f(1)=1$. Then $\frac{1}{f(2022)}+\frac{1}{f(2028)}$ is equal to
Let $A=\{1,3,7,9,11\}$ and $B=\{2,4,5,7,8,10,12\}$. Then the total number of one-one maps $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, such that $\mathrm{f}(1)+\mathrm{f}(3)=14$, is :
Consider the function $f (x) = x^3 - 8x^2 + 20x -13$
Number of positive integers $x$ for which $f (x)$ is a prime number, is
The domain of definition of the function $y(x)$ given by ${2^x} + {2^y} = 2$ is
If $f(x) = \frac{1}{{\sqrt {x + 2\sqrt {2x - 4} } }} + \frac{1}{{\sqrt {x - 2\sqrt {2x - 4} } }}$ for $x > 2$, then $f(11) = $