The domain of the definition of the function $f\left( x \right) = \frac{1}{{4 - {x^2}}} + \log \,\left( {{x^3} - x} \right)$ is

  • [JEE MAIN 2019]
  • A

    $\left( {1,2} \right) \cup \left( {2,\infty } \right)$

  • B

    $\left( { - 1,0} \right) \cup \left( {1,2} \right) \cup \left( {3,\infty } \right)$

  • C

    $\left( { - 1,0} \right) \cup \left( {1,2} \right) \cup \left( {2,\infty } \right)$

  • D

    $\left( { - 2, - 1} \right) \cup \left( { - 1,0} \right) \cup \left( {2,\infty } \right)$

Similar Questions

A function $f(x)$ is given by $f(x)=\frac{5^{x}}{5^{x}+5}$, then the sum of the series

$f\left(\frac{1}{20}\right)+f\left(\frac{2}{20}\right)+f\left(\frac{3}{20}\right)+\ldots \ldots+f\left(\frac{39}{20}\right)$ is equal to ....... .

  • [JEE MAIN 2021]

If function $f : R \to S, f(x) = (\sin x -\sqrt 3 \cos x+1)$ is onto, then $S$ is equal to

Show that the function $f: N \rightarrow N ,$ given by $f(1)=f(2)=1$ and $f(x)=x-1$ for every $x>2,$ is onto but not one-one.

Statement $1$ : If $A$ and $B$ be two sets having $p$ and $q$ elements respectively, where $q > p$. Then the total number of functions from set $A$ to set $B$ is $q^P$.
Statement $2$ : The total number of selections of $p$ different objects out of $q$ objects is ${}^q{C_p}$.

  • [AIEEE 2012]

Range of $f(x) = sin^{-1} (\sqrt {x^2 + x +1})$ is -